A general method of the ternary mixtures analysis has been presented. This method is based on the dependence between two different macroscopic physical magnitudes (the refractive index n, and the position of the long-wave absorption maximum v_{max} of a solvatochromic dye) and the composition of the measured mixture. The presented method consists of: 1) determination of the relations: $v_{\text{exp}} = f(x_A, x_B, x_C)$ and $n_{\text{exp}} = f(x_A, x_B, x_C)$, which are the mathematical expressions of both calibration surfaces; 2) determination of the intersection traces of both calibration surfaces with the planes $v_{\text{exp}} = \text{const}$ and $n_{\text{exp}} = \text{const}$, where v_{exp} and n_{exp} are the values measured for the analysed ternary mixture; 3) determination of the intersection points coordinates of both traces mentioned above, which represent the searched fractions of the mixture components. The method was verified with a few ternary mixtures from which two are presented here: water–methanol–ethanol and water–ethanol–glucose (the latter component being in the form of a syrup). The calibration surfaces determined earlier gave the mixture component fractions with the absolute error less than 1% during ca 5 min necessary for the measurements and the mathematical calculations.